Perspectives on Foundation Engineering for Design-Build Projects

Dan Brown, P.E., Ph.D.

Dan Brown and Associates

Schedule

Competitive Price / Best Value

Risk Profile

- Schedule
 - D-B is a very effective method to accelerate project delivery
 - Foundations typically critical path item
 - Uncertainties regarding submittal / acceptance hold point items present schedule risk

- Risk Profile
 - Responsible bidders price the risk
 - Better geotechnical information reduces risk
 - Some risks are best retained by owner

- Competitive Price / Best Value
 - In the absence of best value selection criteria, low price always wins
 - One can only bid to meet the stated criteria; the rules must be clear
 - Value items must be clearly conveyed
 - Performance criteria

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Geotechnical Information Practices in Design-Build Projects

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

Example: Honolulu Rail Transit

- Geotechnical Baseline Report
 - Wide range of varying ground conditions
- Extensive Performance Testing Requirement
 - Allowed innovation

Honolulu Rail Project

Oahu - Geology

Surface Geology on Oahu

Figure 5. Generalized surficial geology, Oahu, Hawaii (modified from Stearns, 1939; Langenheim and Clague, 1987; Presley and others, 1997).

Anticipated Geologic Materials

- Basalt Formation
- Saprolite (Partially Weathered Basalt)
- Volcanic Tuff ("Mudrock")
- Coralline Detritus & Coral Formation
- Alluvium (Stiff/Dense Silty Clays & Silty Sands with Variable Amounts of Cobbles & Boulders)
- Recent Alluvium & Lagoonal Deposits (Soft Silty Clays & Loose Silty Sands)

WOFH Ground Conditions

14 Load Tests on 11 miles of Guideway

Basalt Formation (Vugular)

Honolulu On The Move 🛨

Coral Formation

Honolulu On The Move 🚭

Coralline Detritus (Broken Up)

Honolulu On The Move 🔂

Volcanic Tuff ("Mudrock")

Honolulu On The Move 🛨

Base Grouting in Sand/Gravel/Cobbles

Example: Honolulu Rail Transit

- Geotechnical Baseline Report
 - Helped define risks, minimize contingency costs
- Extensive Performance Testing Requirement
 - Allowed innovation

Example: Hastings Bridge, MN

- Best Value Selection Process
 - Price / Technical Score
- Verification of High Capacity Pipe Piles
- North Abutment Settlement Issue

Hastings, MN Steel Pipe Piles

- 42" dia x 1" x 150'
- PDA used to monitor driving stress so pile can be driven hard
- Statnamic axial for verification

Hastings, MN Steel Pipe Piles

Hastings Steel Pipe Pile Testing

Hastings Bridge

From the RFP:

4.3.3.5.3 Geotechnical (5 Points)

The Proposal shall include a narrative describing the Proposer's approach to managing long-term settlement on the North Approach Segment. Mn/DOT will evaluate the following subfactors:

- Adequacy of design to minimize long-term settlement on the North Approach Segment
- Adequacy of construction validation of settlement criteria to minimize long-term settlement on the North Approach Segment

Pile Supported Embankment

Pile raft thru soft clay at North Embankment

Pile Supported Embankment

Hastings Bridge

Some Key Conclusions of NCHRP 429

- Qualifications & Experience of DB Geotechnical Team is key to quality
- Geotech reviews affect schedule; use overthe-shoulder reviews to expedite schedule
- Weight geotechnical factors appropriately to the importance to project success
- Use ATC's to allow bidders to reduce risk

Some Key Conclusions of NCHRP 429

- Assign highly qualified owner geotech personnel to project
- <u>RFQ:</u> Highly qualified DB'er geotech personnel
- RFP:
 - Confidential 1-on-1 meetings
 - Preappoved ATCs
 - DB'er additional site investigation
 - Risk-sharing DSC clause
 - Specify performance measures

- **Mandate** high confidence geotech design solutions
- Assure geotech design quality
- Increase agency involvement geotech design QA
- Expedite geotech design
 - Maximize over-the-shoulder design review
- Single geotech design review
- Early release of geotech design packages

- <u>Assure</u> geotech construction quality
- Increased agency involvement in construction QA
- Use of instrumentation to verify geotech performance
- Specific geotech verification & acceptance testing plan

FIGURE 13 Design-build geotechnical decision process based on the conclusions and effective practices.

Summary

- Geotechnical issues can be critical to success of Design-Build projects;
 - Schedule-costs-risks
- RFP should reflect value of geotechnical aspects
- Manage risks with quality prebid geotech data, GBR, DSC clauses

Summary

- Agencies can encourage good performance with:
 - High value on geotech qual's
 - Clear performance requirements, QA
 - ATC's